ECE 641 Advanced Topics in Supervisory Control for Discrete Event Systems

Lecture 8

Associate Prof. Dr. Klaus Schmidt

Department of Mechatronics Engineering - Çankaya University

PhD Course in Electronic and Communication Engineering Credits (3/0/3)Course webpage: http://ece641.cankaya.edu.tr/

Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University

Decentralized Control

Conjunctive Architecture

Decidability

Literature

Decentralized Control: Basics

Components

- Plant $G = (X, \Sigma, \delta, x_0, X_m)$
- Specification $K \subseteq L_{\mathrm{m}}(G)$; automaton $C = (Y, \Sigma, \gamma, y_0, Y_{\mathrm{m}})$
- Observable event sets $\Sigma_{o,i} \subseteq \Sigma$ for i = 1, ..., n $\Rightarrow \Sigma_o = \bigcup_{i=1}^n \Sigma_{o,i}$
- Controllable events sets $\Sigma_{c,i} \subseteq \Sigma$ for i = 1, ..., n $\Rightarrow \Sigma_c = \bigcup_{i=1}^n \Sigma_{c,i}$

• Supervisors under partial observation S_i , $i = 1, \ldots, n$

Task

• Determine the supervisors S_i , i = 1, ..., n such that the closed loop language is K

Decentralized Control: Architecture

Decentralized Supervisory Control Loop

Gap 1

Idea

- Each S_i , i = 1, ..., n only observes $\Sigma_{o,i}$
- Each S_i , i = 1, ..., n can disable events in $\Sigma_{c,i}$
- Control decision of S_1, \ldots, S_n is fused to get overall control decision Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University

Decentralized Control

Conjunctive Architecture

Decidability

Literature

Decentralized Control: Decision Fusion

Conjunctive Architecture

Intersection of disablement decisions
 ⇒ If one S_i disables an event σ ∈ Σ_{c,i}, it is disabled

Disjunctive Architecture

Union of enablement decisions
 ⇒ If one S_i enables an event σ ∈ Σ_{c,i}, it is enabled

Alternative Architectures

See for example

Chakib, H.; Khoumsi, A., Multi-Decision Supervisory Control: Parallel Decentralized Architectures Cooperating for Controlling Discrete Event Systems, Automatic Control, IEEE Transactions on, vol.56, no.11, pp.2608–2622, 2011.

- \Rightarrow We will study the conjunctive architecture
- \Rightarrow Closed loop is represented by $(||_{i=1}^n S_i)||G$

Decidability

Decentralized Control: Conjunctive Architecture

Example

Gap 2

Klaus Schmidt

Department of Electronic and Communication Engineering - Çankaya University

Decentralized Control

Conjunctive Architecture

Decidability

Literature

Gap 3

Decentralized Control: Conjunctive Architecture

Example

Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University

Decentralized Control: Conjunctive Architecture

Example

Gap 4

Question

• Under which condition is the conjunctive architecture sufficient for realizing a given specification *K*?

Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University

Decentralized Control

Conjunctive Architecture

Decidability

Literature

Conjunctive Architecture: Co-Observability

Definition (Co-observability)

Let G be a plant automaton, $K \subseteq L_m(G)$ be a specification, $\Sigma_{o,i}$ be the sets of observable events and $\Sigma_{c,i}$ be the sets of controllable events for i = 1, ..., n. Define the natural projections $p_i : \Sigma^* \to \Sigma^*_{o,i}$ for i = 1, ..., n. K is co-observable for G, $\Sigma_{o,i}$, $\Sigma_{c,i}$, i = 1, ..., n if for all $s \in \overline{K}$ and all $\sigma \in \Sigma_c$

$$(s\sigma
ot\in \overline{K})$$
 and $(s\sigma \in L(G))$
 $\Rightarrow \exists i \in \{1, \dots, n\}$ such that $p_i^{-1}p_i(s)\sigma \cap \overline{K} = \emptyset$ and $\sigma \in \Sigma_{c,i}$.

Remarks

- Assume that σ has to be disabled after s
- There should be at least one supervisor that is sure that σ must be disabled and that actually can disable σ after observing p_i(s)

Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

Gap 5

Literature

Gap 6

Conjunctive Architecture Decidability Conjunctive Architecture: Special Cases **Observability** • Co-observability becomes observability if • for some *i*, $\Sigma_{o,i} = \Sigma$ and $\Sigma_{c,i} = \Sigma_c$ • for $j \in \{1, \ldots, n\} \setminus \{i\}$, $\Sigma_{\mathbf{o}, j} = \emptyset$ **Independent Observability** • Co-observability becomes equivalent to observability of K for G and all p_i and $\Sigma_{c,i}$, i = 1, ..., n if $\Sigma_{c,i} \cap \Sigma_{c,j} = \emptyset$ for all $i \neq j$ Example Klaus Schmidt Department of Electronic and Communication Engineering - Çankaya University Decentralized Control Conjunctive Architecture Decidability Conjunctive Architecture: Co-observability **Example**

Conjunctive Architecture: Main Theorem

Theorem (Decentralized Supervisory Control)

Let G be a plant automaton, $K \subseteq L_m(G)$ be a specification, $\Sigma_{o,i}$ be the sets of observable events and $\Sigma_{c,i}$ be the sets of controllable events for i = 1, ..., n. Define the natural projections $p_i : \Sigma^* \to \Sigma^*_{o,i}$ for i = 1, ..., n. There is a nonblocking decentralized supervisor S_i for i = 1, ..., n in the conjunctive architecture such that

 $L_m(S_1||\cdots||S_n||G) = K$ and $L(S_1||\cdots||S_n||G) = \overline{K}$

if and only if

- K is controllable for G and Σ_u .
- K is co-observable for G, $\Sigma_{o,i}$ and $\Sigma_{c,i}$ for i = 1, ..., n.
- K is $L_m(G)$ -closed.

Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University

Decentralized Control

Conjunctive Architecture

Decidability

Literature

Conjunctive Architecture: Supervisor Computation

Decentralized Supervisor S_i

• Supervisor under partial observation for $p_i(K)$

Example

Gap 7

Decentralized Control

Conjunctive Architecture

Decidability

Literature

Decidability: Decentralized Supervisory Control

Undecidability Result

- Assume G, $K \subseteq L_{\mathsf{m}}(G)$, $\Sigma_{\mathsf{o},i}$ and $\Sigma_{\mathsf{c},i}$ for $i = 1, \ldots, n$
- Assume that *K* is not co-observable
- The problem of finding a decentralized supervisor S_1, \ldots, S_n such that $L_m(S_1||\cdots S_n||G) \subseteq K$ is undecidable

S. Tripakis, Undecidable problems of decentralized observation and control, Information Processing Letters, vol. 90, no. 1, pp. 21–28, 2004.

Further Literature

- Rudie, K.; Willems, J.C., The computational complexity of decentralized discrete-event control problems, Automatic Control, IEEE Transactions on, vol.40, no.7, pp.1313–1319, 1995.
- Yoo, T.-S., and S. Lafortune, A general architecture for decentralized supervisory control of discrete-event systems, Discrete Event Dynamic Systems: Theory & Applications, Vol. 12, No. 3, pp. 335–377, 2002.

Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University