Reminder	Properties	Supervisory Control	Normality	Supremal Normal Sublanguage
Proper	ties: Union	of Observable	Languges	
Exampl	e			
				Gap 1
Klaus Schmidt				
Department of	Electronic and Commu	nication Engineering – Çankaya	University	
Reminder	Properties	Supervisory Control	Normality	Supremal Normal Sublanguage
	רי וי			
Proper	ties: Result	S		
Lemma	\sim	a ant of an turllah	la avanta S	a ant of channella
events. $K_1 \cup K_2$	Assume that Σ_{c} is not necess	a set of controllab $K_1,K_2\subseteqL_{\mathrm{m}}(G)$ arrarily observable for	e events, Σ_{o} e observable : $G, \Sigma_{c}, \Sigma_{o}$.	a set of observable for G, Σ_c , Σ_o . Then,
Remark	s			
• The	e lemma impli	es that there is no	supremal obs	ervable sublanguage!
Lemma				
Let G b	e a plant, $\Sigma_{\rm c}$	a set of controllab	le events, $\Sigma_{\rm o}$	a set of observable

events. Assume that $K_1, K_2 \subseteq L_m(G)$ are observable for G, Σ_c , Σ_o . Then, $K_1 \cap K_2$ is observable for G, Σ_c , Σ_o .

Remarks

• There exists an "infimal observable superlanguage"

Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University

Reminder	Properties	Supervisory Control	Normality	Supremal Normal Sublanguage
Propert	ties: Result	S		
Proof				
				Gap 2
Klaus Schmidt				
Department of I	Electronic and Commun	iication Engineering – Çankaya l	Jniversity	
Reminder	Properties	Supervisory Control	Normality	Supremal Normal Sublanguage
Supervi	icony Contr	ol Racic Prob	lom	
Jupervi	Soly Conti			
Problem	(Observabilit	y Theorem)		
Let G b	e a plant auto	omaton, $K\subseteq L_{ m m}(G)$	i) a specificat	tion language, Σ_c a
controlla	able event set,	, $\Sigma_{ m o}$ an observable	event set and	d p: $\Sigma^{\star} ightarrow \Sigma_{ m o}^{\star}$ the
associate	ed natural pro	jection. Assume th	at K is $L_{\rm m}(C)$	G)-closed. Find a
nonbloci	king superviso	r under partial obs	ervation 5 su	ich that
$\bigcirc L_{\rm m}($	$(S G) \subseteq K$			
\bigcirc $L_{\rm m}($	(S G) is as la	irge as possible		
Remark	ŝ			

• We already know that there might not be a supremal solution \Rightarrow We can look for maximal solutions such that for all other supervisors S': $L_{\rm m}(S'||G) \not\supseteq L_{\rm m}(S||G)$

 \Rightarrow We can look for conditions such that a supremal solution exists

	roperties	Supervisory Control	Normality	Supremal Normal Sublanguage
Supervis	sory Conti	rol: Example		
Databas	e Concurre	ncy Control		
				Gap 3
Department of E	lectronic and Commu	nication Engineering – Çankaya	University	
Reminder	Properties	Supervisory Control	Normality	Supremal Normal Sublanguage
Reminder	Properties	Supervisory Control	Normality	Supremal Normal Sublanguage
Reminder Supervis	Properties	Supervisory Control	Normality	Supremal Normal Sublanguage
Reminder Supervis Databas	Properties sory Contr e Concurre	Supervisory Control rol: Example ncy Control	Normality	Supremal Normal Sublanguage
Reminder Supervis Databas	Properties SORY Contr e Concurrer	Supervisory Control rol: Example ncy Control	Normality	Supremal Normal Sublanguage Gap 4
Reminder Supervis Databas	Properties Sory Contr se Concurrer	Supervisory Control rol: Example ncy Control	Normality	Supremal Normal Sublanguage Gap 4
Reminder Supervis Databas	Properties SORY Contr e Concurrer	Supervisory Control rol: Example ncy Control	Normality	Supremal Normal Sublanguage Gap 4
Reminder Supervis Databas	Properties sory Contr se Concurren	Supervisory Control rol: Example ncy Control	Normality	Supremal Normal Sublanguage Gap 4
Reminder Supervis Databas	Properties sory Contr e Concurrer	Supervisory Control rol: Example ncy Control	Normality	Supremal Normal Sublanguage Gap 4
Reminder Supervis Databas	Properties sory Contr e Concurrer	Supervisory Control rol: Example ncy Control	Normality	Supremal Normal Sublanguage
Reminder Supervis Databas	Properties sory Contr e Concurrer	Supervisory Control rol: Example ncy Control	Normality	Supremal Normal Sublanguage Gap 4
Reminder Supervis Databas	Properties sory Contr e Concurrent se Concurrent	Supervisory Control rol: Example ncy Control	Normality	Supremal Normal Sublanguage
Reminder Supervis Databas	Properties sory Contr e Concurrer	Supervisory Control rol: Example ncy Control	Normality	Supremal Normal Sublanguage Gap 4
Reminder Supervis Databas	Properties sory Contr e Concurrent se Concurrent	Supervisory Control rol: Example ncy Control	Normality	Supremal Normal Sublanguage

Reminder	Properties	Supervisory Control	Normality	Supremal Normal Sublanguage
Supervi	sory Contr	ol: Example		
Databas	se Concurren	cy Control		
				Gap 5
Klaus Schmidt Department of E	electronic and Commun	ication Engineering – Çankaya	Jniversity	
Reminder	Properties	Supervisory Control	Normality	Supremal Normal Sublanguage
Normal	itv: Definit	ion		
literina				
Let G be	n e an automato	on with the alphab	et Σ $K \subset I_{*}$	(G) be a
specifica projectio	tion, Σ_{o} a set n. <i>K</i> is denot	of observable eve ed as normal for G	$\begin{array}{c} \text{nts and } p \\ \text{ots and } p \\ \text{ots and } p \\ \text{if} \end{array}$	$^{*} \rightarrow \Sigma_{o}^{*}$ be a natural
		$\overline{K} = p^{-1} p(\overline{K})$	$\cap L(G)$	
Remark	S			
₀ p(K	\bar{X}) is the "obse	ervation" of \overline{K}		
Nor	mality means	that \overline{K} can be rec	overed from it	ts observation and G
Nor	mality is a co	ndition for closed	anguages	

Reminder	Properties	Supervisory Control	Normality	Supremal Normal Sublanguage
Normal	ity: Examp	le		
Databas	se Concurrer	icy Control		
				Gap б
Klaus Schmidt		· · · · · · · · · · · · · · · · · · ·	····	
Department of E	lectronic and Commun	ication Engineering — Çarıkaya C	Jniversity	
Reminder	Properties	Supervisory Control	Normality	Supremal Normal Sublanguage
Narmal	: Dropor	+:~~		
Norman	ity: Proper	ties		
Lemma				
Assume for G. ai	that $K \subseteq L_{ m m}($ nv $\Sigma_{ m a} \subset \Sigma$ an	(G) is normal for G	and p. The	n, K is observable
Dreaf	<i>iy</i> <u><i>z</i></u> <u><i>c</i></u> <u><i>z</i></u> <i><i>c</i></i>			
				Gap 7

Reminder	Properties	Supervisory Control	Normality	Supremal Normal Sublanguage
Norma	lity: Proper	ties		
Lemma				
Normali	ity is stronger	than observability.		
<u>Proof</u>				
				Gap 8
Klaus Schmidt Department of	Electronic and Commu	nication Engineering – Çankaya I	Jniversity	
Reminder	Properties	Supervisory Control	Normality	Supremal Normal Sublanguage
Norma	lity: Dropor	tion		
NOMA	iity. Fropei	LIES		
Lemma				
Assume	that $K_1, K_2 \subseteq$	${}_{\!$	l for G and p	b. Then, $K_1 \cup K_2$ is
погта	for G and p.			
Proof				Gap 9

eminder	Properties	Supervisory Control	Normality	Supremal Normal Sublanguage
Vormali	ty: Proper	rties		
- - -				
I heorem				
Assume t	that $\Sigma_{\mathrm{c}} \subseteq \Sigma_{\mathrm{c}}$, Then, observabili	ty and norma	ality are equivalent.
Droof				
				Gap 10
				·
laus Schmidt				
epartment of El	ectronic and Commur	nication Engineering – Çankaya U	Jniversity	

Normality

Supremal Normal Sublanguage

Supremal Normal Sublanguage: Discussion

Observation

Reminder

- There exists a supremal normal sublanguage SupN(K, G, p)
- There exists a supremal controllable sublanguage
- If $\Sigma_c \subseteq \Sigma_0$, there is a supremal observable sublanguage

Supervisory Control

 \Rightarrow Compute supremal controllable and normal sublanguage in order to solve the supervisory control problem under partial observation

Computation of SupN(K, G, p)

Properties

• Lin-Brandt formula for prefix-closed languages:

$$SupN(K, G, p) = K \setminus (p^{-1}p(L(G) \setminus K)\Sigma^{\star})$$

• $p^{-1}p(L(G) \setminus K)$: strings with same observation as forbidden strings \Rightarrow Remove all potentially forbidden strings and their successors from K

Supremal Normal Sublanguage: Solution **Computation of** SupN(K, G, p) (General Case) • $K_1 := K$ • Iteration: $K_{i+1} = SupN(\overline{K}_i, G, p) \cap K$ until $K_{i+1} = K_i$ \Rightarrow Result is SupN(K, G, p) **Computation of** $SupCN(K, G, p, \Sigma_u)$ • Iterate until $K_{i+1} = K_i$ starting from $K_1 = K$ • Compute $K_{i+1} = SupCon(K_i, G, \Sigma_u), i = i + 1$ • Compute $K_{i+1} = SupN(K_i, G, p)$, i = i + 1• Complexity is exponential in the worst-case because of projection! Example Gap 11 Klaus Schmidt Department of Electronic and Communication Engineering - Çankaya University Reminder Properties Supervisory Control Normality Supremal Normal Sublanguage Supremal Normal Sublanguage: Example **Database Concurrency Control** Gap 12 Klaus Schmidt Department of Electronic and Communication Engineering - Çankaya University