ECE 641 Advanced Topics in Supervisory Control for Discrete Event Systems

Lecture 6

Associate Prof. Dr. Klaus Schmidt

Department of Mechatronics Engineering - Çankaya University

PhD Course in Electronic and Communication Engineering Credits (3/0/3) Course webpage: http://ece641.cankaya.edu.tr/

Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University

Supervision Under Partial Observation

Observability

Supervision Under Partial Observation: Basics

Components

- Plant automaton $G = (X, \Sigma, \delta, x_0, X_m)$
- Specification $K \subseteq L_{\mathrm{m}}(G)$, specification automaton $C = (Y, \Sigma, \gamma, y_0, Y_{\mathrm{m}})$
- ${\circ}\,$ Controllable events $\Sigma_c,$ uncontrollable events Σ_u
- ${\circ}\,$ Observable events $\Sigma_{\rm o},$ unobservable events $\Sigma_{\rm uo}$
- Supervisor under partial observation: $S = (Q, \Sigma, \nu, q_0, Q_m)$ such that
 - L(S) is controllable for G and Σ_{u}
 - for all $s, s' \in L(S)$ such that p(s) = p(s') and all $\sigma \in \Sigma_c$ it must hold that $s\sigma \in L(S) \Leftrightarrow s'\sigma \in I(S)$

Remarks

• A supervisor under partial observation only sees observable events \Rightarrow Strings with same observation must lead to same control decision

Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University

Supervision Under Partial Observation: Illustration

Examples

Gap 1

Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University

Supervision Under Partial Observation

Observability

Supervision Under Partial Observation: Illustration

Examples

Gap 2

Supervision Under Partial Observation: Questions

Observations

- Strings with the same observation require the same control action
- It is possible to disable controllable unobservable events even though they cannot be observed

Existence

• Determine under which conditions a supervisor under partial observation exists such that $L_m(G||S) = K$ and $L(S||G) = \overline{K}$

Synthesis

• Determine a (largest possible) sublanguage $K_{sub} \subseteq K$ such that $L_{\mathrm{m}}(G||S) = K_{sub}$ and $L(S||G) = \overline{K}_{sub}$

Reminder: $L_m(G)$ -**Closure**

•
$$K \subseteq L_{\mathrm{m}}(G)$$
 is $L_{\mathrm{m}}(G)$ -closed if $K = \overline{K} \cap L_{\mathrm{m}}(G)$

Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University

Supervision Under Partial Observation

Observability

Observability: Definition

Definition (Observability)

Let G be a plant automaton, $K \subseteq L_m(G)$ a specification language, Σ_c a controllable event set, Σ_o an observable event set and $p : \Sigma^* \to \Sigma_o^*$ the associated natural projection. K is denoted as *observable* for G, Σ_c and Σ_o if for all $s, s' \in \overline{K}$ with p(s) = p(s') and for all $\sigma \in \Sigma_c$

 $s\sigma \in L(G)$ and $s'\sigma \in \overline{K} \Rightarrow s\sigma \in \overline{K}$.

Remarks

- Consider strings s, s' with same observation
- σ is possible after s in the plant and σ is allowed after s' by the specification

 $\Rightarrow \sigma$ should also be allowed by the specification after s (otherwise, supervisor has to both enable and disable σ after observing p(s) = p(s')) Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

Observability: Illustration

Examples

Gap 3

Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University

Supervision Under Partial Observation

Observability

Observability: Supervisor Existence

Theorem (Observability Theorem)

Let G be a plant automaton, $K \subseteq L_m(G)$ a specification language, Σ_c a controllable event set, Σ_o an observable event set and $p : \Sigma^* \to \Sigma_o^*$ the associated natural projection. There exists a nonblocking supervisor under partial observation S such that $L_m(G||S) = K$ and $L(G||S) = \overline{K}$ if and only if

- \bigcirc K is controllable for G and $\Sigma_{\rm u}$
- $\bigcirc~K$ is observable for G, $\Sigma_{\rm c}$ and $\Sigma_{\rm o}$
- K is $L_m(G)$ -closed

Remarks

- The theorem assumes that the supervisor is non-marking
- We cannot use the specification as supervisor (unobservable events)

Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

Observability: Supervisor Computation

Procedure

- Compute S = (Q, Σ, ν, q₀, Q_m) as observer automaton of C
 q₀ = UR(y₀)
 - Transitions from any state $q \in Q$ with observable event $\sigma \in \Sigma_{o}$: $\mu(q, \sigma) = OR(q, \sigma)$
- For each state q ∈ Q and each y ∈ q: add unobservable events that are possible in C at y as selfloops to S:

$$(orall q \in Q)(orall y \in q)(orall \sigma \in \Sigma_{\mathrm{uo}}) \, \gamma(y,\sigma)! \Rightarrow
u(q,\sigma) = q$$

Remarks

- S changes its state only with observable transitions
- $\circ\,$ Whenever an unobservable event is allowed by the specification, a selfloop transition is introduced in $S\,$

 \Rightarrow Strings with the same observation lead to the same control action Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University

Supervision Under Partial Observation

Observability: Supervisor Computation

Example

Gap 4

Observability

Observability: Verification

Input

• G, C, Σ_c, Σ_o

Result

• Verifier automaton $V = (W, \Gamma, \omega, w_0, W_m)$

•
$$W \subseteq Y \times Y \times X \cup \{NO\}$$

• $\Gamma = (\Sigma \cup \{\epsilon\}) \times (\Sigma \cup \{\epsilon\}) \times (\Sigma \cup \{\epsilon\})$
• $w_0 = (y_0, y_0, x_0)$
• $W_m = \{NO\}$
• For all $\sigma \in \Sigma_o$
 $\omega((y_1, y_2, x), (\sigma, \sigma, \sigma)) = (\gamma(y_1, \sigma), \gamma(y_2, \sigma), \delta(x, \sigma))$
if $\gamma(y_1, \sigma)!$ and $\gamma(y_2, \sigma)!$ and $\delta(x, \sigma)!$
Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

Supervision Under Partial Observation

Observability: Verification

Result

• For all $\sigma \in \Sigma_{uo}$

$$\omega((y_1, y_2, x), (\sigma, \epsilon, \epsilon)) = (\gamma(y_1, \sigma), y_2, x)$$

if
$$\gamma(y_1, \sigma)$$
!

$$\omega((y_1, y_2, x), (\epsilon, \sigma, \sigma)) = (y_1, \gamma(y_2, \sigma), \delta(x, \sigma))$$
if $\gamma(y_2, \sigma)$! and $\delta(x, \sigma)$!

$$\omega((y_1, y_2, x), (\sigma, \epsilon, \sigma)) = NO$$
if $\sigma \in \Sigma_c, \gamma(y_1, \sigma)$!, $\neg \gamma(y_2, \sigma)$! and $\delta(x, \sigma)$!

Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University Observability

Observability: Verification

Example

Gap 5

Klaus Schmidt

Department of Electronic and Communication Engineering - Çankaya University

Supervision Under Partial Observation

Observability: Verification

Example

Observability

Gap 6

Observability: Verification

Properties

Consider any string (s₁, s₂, s₃) from w₀ to state (y₁, y₂, x) in V γ(y₀, s₁) = y₁, γ(y₀, s₂) = y₂, δ(x₀, s₃) = x s_i ∈ K for i = 1, 2, 3 s₂ = s₃ according to the contruction rules p(s₁) = p(s₂) = p(s₃) ⇒ State NO is reachable if and only if observability is violated!
Theorem (Observability Verification)
K is observable for G, Σ_c and Σ_o if and only if L_m(V) = Ø.

Remarks

• State space of V is $Y \times Y \times X \cup \{NO\}$

 \Rightarrow Complexity of observability verification is $O(|Y|^2 |X|)$

Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

Supervision Under Partial Observation

Observability

Observability: Main References

Books

- W.M. Wonham, Lecture notes on control of discrete-event systems, 2011 edition, U. Toronto, Toronto, Canada.
- C. Cassandras, S. Lafortune, Discrete-event systems, Springer, New York, 2008. Chapter 2 and 3.

Papers

- Cieslak, R., C. Desclaux, A. Fawaz, and P. Varaiya, Supervisory control of discrete-event processes with partial observations, IEEE Transactions on Automatic Control, Vol. 33, No. 3, pp. 249260, 1988.
- Lin, F., and W.M. Wonham, *On observability of discrete-event systems*, Information Sciences, Vol. 44, pp. 173198, 1988.
- Lamouchi, H., and J.G. Thistle, *Effective control synthesis for DES under partial observations*, Proceedings of the 39th IEEE Conference on Decision and Control, pp. 2228, 2000.