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Computational Complexity Decidability

Computational Complexity: Properties

Properties

Big Theta is equivalent to Big O and Big Omega at the same time:
f (n) = Θ(g(n)) ⇔ f (n) = O(g(n)) and f (n) = Ω(g(n))

Transitivity: f (n) = Θ(g(n)) and g(n) = Θ(h(n)) ⇒ f (n) = Θ(h(n))
⇒ Same holds for O and Ω

Additivity: f (n) = Θ(h(n)) and g(n) = Θ(h(n)) ⇒
f (n) + g(n) = Θ(h(n))
⇒ Same holds for O and Ω

Reflexivity: f (n) = Θ(f (n))
⇒ Same holds for O and Ω

Symmetry: f (n) = Θ(g(n)) if and only if g(n) = Θ(f (n))

Transpose Symmetry: f (n) = O(g(n)) if and only if g(n) = Ω(f (n))
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Computational Complexity: Properties

Computations
Gap 1
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Computational Complexity Decidability

Decidability: Solution of an Algorithm

Guaranteed Solution Approach

Brute force: For many non-trivial problems, there is a natural brute
force search algorithm that checks every possible solution.
⇒ Enumerate all candidate solutions and check if the solution
properties are fulfilled

Typically the complexity of such approach is O(2n) or worse for
inputs of size n
⇒ Unacceptable in practice

Desirable Scaling Property

There exists constants K > 0 and d > 0 such that run-time time is
bounded by K · nd steps for every input of size n
⇒ Polynomial time O(nd)
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Decidability: Algorithmic and Problem Complexity

Algorithmic Complexity

Measure of how difficult it is to perform the algorithmic computation
⇒ Algorithmic complexity is specific to an algorithm

Problem Complexity

Complexity of the algorithm with the lowest order of growth of
complexity for solving a given problem
⇒ Specific to the problem

Decision Problem

Formulation of a problems as question with Yes/No answer

⇒ We want to classify decision problems according to their difficulty
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Computational Complexity Decidability

Decidability: Decision Problems

Diagnosability
Gap 2

Boolean Satisfiability

Literal: boolean variable or its negation: xi or x i

Clause: Disjunction of literals: Cj = x1 ∨ x2 ∨ x3

Conjunctive normal form (CNF): Boolean formula that is conjunction
of clauses: B = C1 ∧ C2 ∧ · · · ∧ Cn

Decision Problem CNF-SAT: Given B in conjunctive normal form, is
there an assignment of the variables xi such that B = true?
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Computational Complexity Decidability

Decidability: Decision Problems

3-CNF SAT
CNF-SAT, where each clause has 3 distinct literals.

Gap 3

Directed Hamilton Cycle
Given a directed graph G = (V ,E ), does there exist a simple
directed cycle C that contains every vertex in V

Gap 4
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Computational Complexity Decidability

Decidability: Class P

Definition

Class P consists of (decision) problems that are solvable in
polynomial time
⇒ There is a polynomial-time algorithm with complexity O(nd) for
some d ≥ 0 to solve the problem

Remarks

Problems in P are also called tractable

Problems not in P are called intractable or unsolvable
⇒ Such problems can be solved in reasonable time only for small
inputs or cannot be solved at all
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Decidability: Class P

Examples
Gap 5
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Computational Complexity Decidability

Decidability: Class NP

Nondeterministic algorithm

Two stage procedure

1. Nondeterministic (guessing) stage: Randomly generate a
“candidate” solution

2. Deterministic (verification) stage: Take the candidate to the
problem and returns YES if the candidate represents a solution

NP algorithms (Nondeterministic polynomial)

Nondeterministic algorithm with a polynomial-time verification stage

Class NP

Class of problems that could be solved by NP algorithms
⇒ If we are given a candidate, we could verify that the candidate is
correct in polynomial time

Warning: NP DOES NOT mean non-polynomial
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Decidability: Comparison

P ⊆ NP
Gap 6

Remarks

Big open question in Computer Science: P = NP? (1000000$ prize)

Most computer scientists believe that this is false but there is no
proof
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Computational Complexity Decidability

Decidability: Polynomial Reduction

Definition

Given two problems A, B, we say that A is polynomially reducible to
B (A ≤P B) if:

1 There exists a function f that converts the input of A to inputs of B
in polynomial time

2 A(s) = YES if and only if B(f(s)) = YES for any canditate s

Illustration
Gap 7
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Decidability: Polynomial Reduction

Example
Gap 8
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Computational Complexity Decidability

Decidability: NP-complete Problems

Definition

A problem B is NP-complete if:
1 B ∈ NP
2 A ≤P B for all A ∈ NP

If B satisfies only property (2) we say that B is NP-hard

Remarks

NP-complete problems are defined as the most difficult problems in
NP

Most practical problems turn out to be either P or NP-complete.

No polynomial time algorithm has been discovered for an
NP-Complete problem

No one has ever proven that no polynomial time algorithm can exist
for any NP-Complete problem
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Decidability: Relation between Classes

Illustration
Gap 9
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Computational Complexity Decidability

Decidability: NP-complete Problems

Standard NP-complete Problems

Boolean Satisfiability

Hamilton Path Problem

Vertex Cover

etc.

Examples for NP-hard Problems

Modular supervisory control problem (SUPMM)

m plant automata Gi

n specification automata Hj

⇒ Show that this problem is NP-hard

Gohari, P. and Wonham, W. M.: On the Complexity of Supervisory Control Design in
the RW Framework, IEEE Trans. on Syst., Man, and Cyb.–Part B, 30(5), 2000.
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Decidability: NP-hard Problems

Examples
Gap 10
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Decidability: NP-hard Problems

Examples
Gap 11
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Decidability: NP-hard Problems

Examples
Gap 12
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Computational Complexity Decidability

Decidability: Further Remarks

Remarks

If a problem is proved to be NP-Complete, a good evidence for its
intractability (hardness)
⇒ Not waste time on trying to find efficient algorithm for it

Instead, focus on design approximate algorithm or a solution for a
special case of the problem

Discussion

NP-complete: means problems that are ’complete’ in NP, i.e. the
most difficult to solve in NP

NP-hard - stands for ’at least’ as hard as NP (but not necessarily in
NP);

NP-easy - stands for ’at most’ as hard as NP (but not necessarily in
NP);

NP-equivalent - means equally difficult as NP, (but not necessarily in
NP);
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