ECE 641 Advanced Topics in Supervisory Control for Discrete Event Systems

Lecture 5

Associate Prof. Dr. Klaus Schmidt

Department of Mechatronics Engineering - Çankaya University

PhD Course in Electronic and Communication Engineering Credits (3/0/3) Course webpage: http://ece641.cankaya.edu.tr/

Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University

Computational Complexity

Decidability

Computational Complexity: Properties

Properties

- Big Theta is equivalent to Big O and Big Omega at the same time: $f(n) = \Theta(g(n)) \Leftrightarrow f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$
- Transitivity: $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$ \Rightarrow Same holds for O and Ω
- Additivity: $f(n) = \Theta(h(n))$ and $g(n) = \Theta(h(n)) \Rightarrow$ $f(n) + g(n) = \Theta(h(n))$ \Rightarrow Same holds for O and Ω
- Reflexivity: $f(n) = \Theta(f(n))$ \Rightarrow Same holds for O and Ω
- Symmetry: $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$
- Transpose Symmetry: f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$

Computational Complexity: Properties

Computations

Gap 1

Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University

Computational Complexity

Decidability

Decidability: Solution of an Algorithm

Guaranteed Solution Approach

- Brute force: For many non-trivial problems, there is a natural brute force search algorithm that checks every possible solution.
 ⇒ Enumerate all candidate solutions and check if the solution properties are fulfilled
- Typically the complexity of such approach is $O(2^n)$ or worse for inputs of size n
 - \Rightarrow Unacceptable in practice

Desirable Scaling Property

 There exists constants K > 0 and d > 0 such that run-time time is bounded by K ⋅ n^d steps for every input of size n ⇒ Polynomial time O(n^d)

Decidability: Algorithmic and Problem Complexity

Algorithmic Complexity

Measure of how difficult it is to perform the algorithmic computation
 Algorithmic complexity is specific to an algorithm

Problem Complexity

- Complexity of the algorithm with the lowest order of growth of complexity for solving a given problem
 - \Rightarrow Specific to the problem

Decision Problem

- Formulation of a problems as question with Yes/No answer
- \Rightarrow We want to classify decision problems according to their difficulty

Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University

Computational Complexity

Decidability: Decision Problems

Diagnosability

Boolean Satisfiability

- Literal: boolean variable or its negation: x_i or \overline{x}_i
- Clause: Disjunction of literals: $C_i = x_1 \vee \overline{x}_2 \vee x_3$
- Conjunctive normal form (CNF): Boolean formula that is conjunction of clauses: B = C₁ ∧ C₂ ∧ · · · ∧ C_n
- Decision Problem CNF-SAT: Given B in conjunctive normal form, is there an assignment of the variables x_i such that B = true?

Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University Decidability

Gap 2

Decidability: Decision Problems

3-CNF SAT

• CNF-SAT, where each clause has 3 distinct literals.

Gap 3

Directed Hamilton Cycle

• Given a directed graph G = (V, E), does there exist a simple directed cycle C that contains every vertex in V

Gap 4

Decidability

Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

Computational Complexity

Decidability: Class P

Definition

 Class P consists of (decision) problems that are solvable in polynomial time

 \Rightarrow There is a polynomial-time algorithm with complexity $O(n^d)$ for some $d \ge 0$ to solve the problem

Remarks

- Problems in P are also called tractable
- Problems not in P are called intractable or unsolvable
 ⇒ Such problems can be solved in reasonable time only for small inputs or cannot be solved at all

Decidability: Class P

Examples

Gap 5

Decidability

Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University

Computational Complexity

Decidability: Class NP

Nondeterministic algorithm

- Two stage procedure
- 1. Nondeterministic (guessing) stage: Randomly generate a "candidate" solution
- 2. Deterministic (verification) stage: Take the candidate to the problem and returns YES if the candidate represents a solution

NP algorithms (Nondeterministic polynomial)

• Nondeterministic algorithm with a polynomial-time verification stage

Class NP

Class of problems that could be solved by NP algorithms
 ⇒ If we are given a candidate, we could verify that the candidate is correct in polynomial time

Warning: NP DOES NOT mean non-polynomial Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

Gap 7

Decidability: Comparison

$\mathbf{P} \subseteq \mathbf{NP}$

	Gap 6
Remarks	
• Big open question in Computer Science: $P = NP?$ (1000000\$ pr	ize)
 Most computer scientists believe that this is false but there is no)
•	
proof	
Klaus Schmidt	
Department of Electronic and Communication Engineering – Çankaya University	
Computational Complexity De	ecidability

Decidability: Polynomial Reduction

Definition

- Given two problems A, B, we say that A is polynomially reducible to B (A ≤_P B) if:
 - There exists a function f that converts the input of A to inputs of B in polynomial time
 - A(s) = YES if and only if B(f(s)) = YES for any canditate s

<u>Illustration</u>

Decidability: Polynomial Reduction

Example

Gap 8

Decidability

Klaus Schmidt

Department of Electronic and Communication Engineering - Çankaya University

Computational Complexity

Decidability: NP-complete Problems

Definition

- A problem B is NP-complete if:
 - \bigcirc B \in NP
 - $\bigcirc A \leq_P B \text{ for all } A \in \mathsf{NP}$
- If B satisfies only property (2) we say that B is NP-hard

Remarks

- NP-complete problems are defined as the most difficult problems in NP
- Most practical problems turn out to be either P or NP-complete.
- No polynomial time algorithm has been discovered for an NP-Complete problem
- No one has ever proven that no polynomial time algorithm can exist for any NP-Complete problem

Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

Decidability: Relation between Classes

<u>Illustration</u>

Gap 9

Decidability

Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University

Computational Complexity

Decidability: NP-complete Problems

Standard NP-complete Problems

- Boolean Satisfiability
- Hamilton Path Problem
- Vertex Cover
- etc.

Examples for NP-hard Problems

- Modular supervisory control problem (SUPMM)
- m plant automata G_i
- n specification automata H_j
 - \Rightarrow Show that this problem is NP-hard

Gohari, P. and Wonham, W. M.: On the Complexity of Supervisory Control Design in the RW Framework, IEEE Trans. on Syst., Man, and Cyb.–Part B, 30(5), 2000.

Decidability: NP-hard Problems

Examples

Gap 10

Klaus Schmidt

Department of Electronic and Communication Engineering - Çankaya University

Computational Complexity

Decidability: NP-hard Problems

Examples

Decidability

Decidability: NP-hard Problems

Examples

Gap 12

Decidability

Klaus Schmidt

Department of Electronic and Communication Engineering - Çankaya University

Computational Complexity

Decidability: Further Remarks

Remarks

- If a problem is proved to be NP-Complete, a good evidence for its intractability (hardness)
 - \Rightarrow Not waste time on trying to find efficient algorithm for it
- Instead, focus on design approximate algorithm or a solution for a special case of the problem

Discussion

- NP-complete: means problems that are 'complete' in NP, i.e. the most difficult to solve in NP
- NP-hard stands for 'at least' as hard as NP (but not necessarily in NP);
- NP-easy stands for 'at most' as hard as NP (but not necessarily in NP);