
ECE 641
Advanced Topics in Supervisory Control for

Discrete Event Systems
Lecture 4

Associate Prof. Dr. Klaus Schmidt

Department of Mechatronics Engineering – Çankaya University

PhD Course in Electronic and Communication Engineering
Credits (3/0/3)

Course webpage: http://ece641.cankaya.edu.tr/

Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

Algorithm: Basics

Algorithm Definition

A computable set of steps to achieve a desired result

Precisely specified using an appropriate mathematical formalism
(such as a programming language)

Efficiency of an Algorithm

Less consumption of computing resources (execution time (CPU
cycles), memory)
⇒ We will focus on time efficiency

Comparison of Algorithms

Question: Assume two algorithms that accomplish the same task
⇒ Which one is better?

Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

Algorithm: Example

Algorithm

1 Initialize: q1 = XM and q2 = X − Xm

2 Formulate table with all state pairs

3 Mark all pairs with one marked and
one unmarked state as distinguishable

4 Mark all pairs with different outgoing
transitions as distinguishable

5 Mark pairs that lead to distinguishable
states with the same event as
distinguishable

6 Repeat the previous step until all state
pairs are investigated

Automata Graph

1

1

2

2

2

3

3

3

4

4

4

5

5

a

a

a

b b

b

b

c

c
c

d

d d

d

d

dd

d

d

d

d

{1,2} {3,4} {5}

⇒ Combine states that are indistinguishable
Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

Algorithm: Example

State Minimization
Gap 1

Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

Algorithm: Analysis

Resources

We want to predict the resources that the algorithm requires

Resources: Memory, processor, other hardware but MOSTLY TIME

General Notions

Run time: Time until an algorithm produces a result
⇒ Run time of a given algorithm generally grows by the size of the
input

Denote size as n: number of items to be processed, number of bits to
represent the relevant quantities, number of states, etc.

Growth rate: How quickly the time of an algorithm grows as a
function of n

Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

Algorithm: Type of Analysis

Worst Case Analysis

Largest possible running time of algorithm on input of a given size.

Provides an upper bound on running time

⇒ Absolute guarantee for the longest run-time for any input
Best Case Analysis

Provides a lower bound on run-time

Input is the one for which the algorithm runs the fastest

Average Case Analysis

Obtain bound on run-time of algorithm on random input as a
function of input size

Hard (or impossible) to accurately model real instances by random
distributions (Algorithm tuned for a certain distribution may perform
poorly on other inputs)

Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

Algorithm: Sequential Search

Illustration
Gap 2

Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

Algorithm: Binary Search

Illustration
Gap 3

Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

Algorithm: Discussion

Illustration
Gap 4

Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

Algorithm: Conclusions

Facts

Run-time depends on the input size n

Usually run-time is fixed for a certain n

Different algorithms might have different run-times

Some algorithms might be better for some inputs and worse for
others

Exact run-time depends on the algorithm but also on the processor
where it runs

General Analysis

We will look at the trend in run-time versus input size rather than
exact time

⇒ Computational Complexity

Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

Computational Complexity: Basics

Task

Compares growth of two functions

Independent of constant multipliers and lower-order effects

Metrics

Big-O Notation: O(•)
Big-Omega Notation: Ω(•)
Big-Theta Notation: Θ(•)

Properties

Allow us to evaluate algorithms

Has precise mathematical definition

Used in a sense to put algorithms into families

May often be determined by inspection of an algorithm
Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

Computational Complexity: Big-O Notation

Definition

Function f (n) is denoted as O(g(n)) for a function g(n) if there exists a
constant K and some value n0 such that for all n ≥ n0

f (n) ≤ K · g(n).

This means, as n→∞, f (n) is upper-bounded by K · g(n).

Useful Choices for g(n)

log n (recall that loga n) = k · logb n for any a, b ∈ R)

nk for k ∈ N0 (polynomial)

kn for some k ∈ R (exponential)

Properties

Big-O-Notation establishes the worst-case performance

Helps compare and see which algorithm has better performance
Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

Computational Complexity: Big-O Notation

Illustration
Gap 5

Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

Computational Complexity: Big-O Notation

State Minimization
Gap 6

Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

Computational Complexity: Hopcroft’s Algorithm

Initialization: P := {Xm,X \ Xm}; Waiting = {Xm}
while Waiting 6= ∅

Choose and remove a set A from Waiting
for each σ ∈ Σ

Let Q be the state set for which a transition on σ leads to A
for each set Y ∈ P for which Q ∩ Y 6= ∅

Replace Y in P by the two sets Q ∩ Y and Y \ Q
if Y belongs to Waiting

Replace Y in Waiting by Q ∩ Y and Y \ Q
else

if |Q ∩ Y | ≤ |Y \ Q|
add Q ∩ Y to Waiting

else
add Y \ Q to Waiting

Result: Set P contains the sets of equivalent states
Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

Computational Complexity: Big-O Notation

State Minimization
Gap 7

Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

Computational Complexity: Big-Omega/Theta Notation

Definition

Function f (n) is Ω(g(n)) if there exists a constant K and some n0 such
that for all n ≥ n0

K · g(n) ≤ f (n).

That is, as n→∞, f (n) is lower-bounded by K · g(n).

Definition

Function f (n) is Θ(g(n)) if there exist constants K1 and K2 and some n0

such that for all n ≥ n0

K1 · g(n) ≤ f (n) ≤ K2 · g(n).

That is, as n→∞, f (n) is upper and lower bounded by some constants
times g(n).

Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

Computational Complexity: Big-Omega/Theta Notatioin

Illustration
Gap 8

Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

Computational Complexity: Common Asymptotic Bounds

Examples

Polynomials: a0 + a1 n + · · ·+ ad n
d is θ(nd) if ad > 0

⇒ Polynomial time: run-time is O(nd) for some constant d
independent of the input size n

Logarithms: O(loga n) = O(logb n) for any constants a, b > 0

Logarithm grows slower than every polynomial
⇒ for each d > 0, log n = O(nd)

Exponential time: run-time is O(kn) for some constant k

Every exponential grows faster than every polynomial
⇒ For every k > 1 and every d > 0, nd = O(kn)

Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

Computational Complexity: Examples

Synchronous Composition
Gap 9

Natural Projection
Gap 10

Diagnosability
Gap 11

Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

	Algorithm
	Computational Complexity

