ECE 641 Advanced Topics in Supervisory Control for Discrete Event Systems

Lecture 3

Associate Prof. Dr. Klaus Schmidt

Department of Mechatronics Engineering - Çankaya University

PhD Course in Electronic and Communication Engineering Credits (3/0/3)Course webpage: http://ece641.cankaya.edu.tr/

Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University

Diagnosability

Diagnoser

Relation to Event Diagnosis

Decentralized Diagnosis

Diagnosability: Language Specification

Given

- Automaton G over alphabet Σ
- Unobservable events $\Sigma_{\rm uo}$ and observable events $\Sigma_{\rm o}$ \to $\Sigma = \Sigma_{\rm uo} \cup \Sigma_{\rm o}$
- Natural projection $p: \Sigma^{\star} \to \Sigma_{\mathrm{o}}^{\star}$
- Prefix-closed specification $K \subseteq L(G)$: $K = \overline{K}$ \rightarrow Specification automaton $C = (Y, \Sigma, \gamma, y_0, Y_m)$ with L(C) = K

Remarks

- p(L(G)) is the language that can be seen from the plant
- K represents the correct system behavior $\rightarrow L(G) \setminus K$ represents faulty system behavior

Diagnosability	Diagnoser	Relation to Event Diagnosis	Decentralized Diagnosis
Diagnosabi	ility: Languag	e Specification	
Illustration			
			Gap 1
Klaus Schmidt Department of Electron	ic and Communication Engin	eering – Çankaya University	
Diagnosability	Diagnoser	Relation to Event Diagnosis	Decentralized Diagnosis
Diagnosabi Definition Let G model $K = \overline{K} \subseteq L($ wrt G and	ility: Definitio a DES, let $\Sigma_o \subseteq$ G) be a specifica	Σ be a set of observable etion language. K is language	vents and let ge-diagnosable
	$(\exists n \in \mathbb{N}) (\forall s \in L)$ st deadlocks) \Rightarrow	$(G)\setminus K)(orall st\in L(G), t \geq (orall u\in p^{-1}p(st)\cap L(G),u otin u otin $	n or (1)

Remarks

- Critical strings are $s \in L(G) \setminus K$
- If a faulty extension *st* leads to deadlock, all strings with the same projection should be faulty
- For all faulty extensions *st* that are longer than a bound *n*, all strings with the same projection should be faulty

Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University

Diagnosability	Diagnoser	Relation to Event Diagnosis	Decentralized Diagnosis
	. – 1		
Diagnosabi	llity: Example	2	
Illustration			
			Gap 2
Klaus Schmidt			
Department of Electron	ic and Communication Engi	neering – Çankaya University	
Diagnosability	Diagnoser	Relation to Event Diagnosis	Decentralized Diagnosis
0	C C		
Diagnoser:	Definition		
Extended S	pecification Au	tomaton $\overline{C} = (\overline{X}, \Sigma, \overline{\gamma}, \overline{V})$	(\overline{Y}_m)
 Initial st 	tate: $\overline{y}_0 = y_0$) 111)
• State se	t: $\overline{Y} = Y \cup \{F\}$		
 Transition 	on relation:		
$\forall y$	\in Y and $orall \sigma \in$ S	Σ such that $\gamma(y,\sigma)!:\overline{\gamma}(y,$	$\sigma)=\gamma(y,\sigma)$
H	$\forall y \in y \text{ and } orall \sigma \in$	Σ such that $ eg \gamma(y,\sigma)!: \overline{\gamma}$	$F(y,\sigma) = F$
	ŕ	$orall \sigma \in \Sigma: \overline{\gamma}(F,\sigma) = F$	
Remarks			
• \overline{C} is equ	ial to C extende	d by a new state <i>F</i>	
Every tr	ansition that is r	not defined in C leads to tl	he state F in \overline{C}

• Every string that leads to state F is faulty

Klaus Schmidt

Department of Electronic and Communication Engineering – Çankaya University

Diagnosability	Diagnoser	Relation to Event Diagnosis	Decentralized Diagnosis
Diagnoser:	Extended Spe	ecification Automato	n
Illustration			
			Gap 3
Klaus Schmidt			
Department of Electro	nic and Communication Engine	ering – Çankaya University	
Diagnosability	Diagnoser	Relation to Event Diagnosis	Decentralized Diagnosis
Diagnoser:	Offline Comp	outation	
Plant Auto	maton with Faul	t Label	
	te synchronous co	mposition $R = (Z, \Sigma, \alpha, z_0)$	$(Z_m) = G \overline{C}$
$\Rightarrow L(R)$) = L(G)		, m , - ,, -
$\Rightarrow Each$	n state of <i>R</i> is a p	air (x, y) with $x \in X$ and	$y \in \overline{Y}$
$\Rightarrow A st$	ate $z = (x, y) \in Z$	$\frac{1}{2}$ belongs to a faulty string	g if $y = F$
Diagnoser I	Automaton $D =$	$(O, \Sigma_{\mathrm{o}}, \mu, o_{0}, O_{\mathrm{m}})$	
• Comput	te D using R		
	$= UR(z_0)$		
 Transiti 	ons from any state	e $o \in O$ with observation b	$\sigma\in \Sigma_{\mathrm{o}}$
• µ(e	$(o,\sigma) = OR(o,\sigma)$		-
Remarks			
D is call	lled an "observer"	automaton of R	

Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University

	Diagnoser	Relation to Event Diagnosis	Decentralized Diagnosis
Diagnoser	: Example		
Illustration			
			Gap 4
Klaus Schmidt			
Department of Electro	onic and Communication Engl	neering – Çankaya University	
Diagnosability	Diagnoser	Relation to Event Diagnosis	Decentralized Diagnosis
Diagnosability	Diagnoser	Relation to Event Diagnosis	Decentralized Diagnosis
Diagnosability Diagnoser	Diagnoser : Example	Relation to Event Diagnosis	Decentralized Diagnosis
Diagnosability Diagnoser	Diagnoser : Example	Relation to Event Diagnosis	Decentralized Diagnosis
Diagnosability Diagnoser Illustration	Diagnoser : Example	Relation to Event Diagnosis	Decentralized Diagnosis Gap 5
Diagnosability Diagnoser Illustration	Diagnoser : Example	Relation to Event Diagnosis	Decentralized Diagnosis Gap 5
Diagnosability Diagnoser Illustration	Diagnoser : Example	Relation to Event Diagnosis	Decentralized Diagnosis
Diagnosability Diagnoser Illustration	Diagnoser : Example	Relation to Event Diagnosis	Decentralized Diagnosis
Diagnosability Diagnoser Illustration	Diagnoser : Example	Relation to Event Diagnosis	Decentralized Diagnosis
Diagnosability Diagnoser Illustration	Diagnoser : Example	Relation to Event Diagnosis	Decentralized Diagnosis
Diagnosability Diagnoser Illustration	Diagnoser : Example	Relation to Event Diagnosis	Decentralized Diagnosis
Diagnosability Diagnoser Illustration	Diagnoser : Example	Relation to Event Diagnosis	Decentralized Diagnosis
Diagnosability Diagnoser Illustration	Diagnoser : Example	Relation to Event Diagnosis	Decentralized Diagnosis
Diagnosability Diagnoser Illustration	Diagnoser : Example	Relation to Event Diagnosis	Decentralized Diagnosis
Diagnosability Diagnoser Illustration	Diagnoser : Example	Relation to Event Diagnosis	Decentralized Diagnosis

Diagnoser: Properties

States

• Each state of D is a subset of $X \times \overline{Y}$ $\Rightarrow D$ has up to $2^{|X| \cdot |\overline{Y}|}$ states

Fault Detection

- If no entry of a diagnoser state o has component $F \Rightarrow$ no fault
- If all entries of a diagnoser state o have component $F \Rightarrow$ fault
- $\, \bullet \,$ Otherwise, we are not sure if fault happened $\, \Rightarrow \,$ uncertain state

Uncertain Cylce in D

• Cycle with uncertain diagnoser states

Indeterminate Cycle in D

- Uncertain cycle such that there are two corresponding cycles in G
 - One that only has states with component F
 - One that only has states without component F

Klaus Schmidt

Department of Electronic and Communication Engineering - Çankaya University

Diagnosability	Diagnoser	Relation to Event Diagnosis	Decentralized Diagnosis
Diagnoser:	Properties		
_	-		
Illustration			
			Gap 6

Diagnoser: Diagnosability Test

Diagnoser

Indeterminate Deadlock

• Uncertain state o in D such that at least one entry deadlocks in R

Diagnosability Condition

 Assume that G does not have any unobservable cycles. K is language-diagnosable for G and p : Σ^{*} → Σ^{*}_o if and only if the diagnoser automaton D neither contains indeterminate cycles nor indeterminate deadlocks.

Remark

- This diagnosability notion allows to deal with deadlocks
- The absence of unobservable cycles can be removed (see Exercise)
- There is a more efficient verification algorithms in the literature

Yoo, T.-S., Garcia, H. E. (2008). Diagnosis of behaviors of interest in partially observed discrete-event systems. System & Control Letters, 57(12), 1023–1029. Klaus Schmidt

Department of Electronic and Communication Engineering - Çankaya University

Diagnosability	Diagnoser	Relation to Event Diagnosis	Decentralized Diagnosis
Diagnoser:	Properties		
Illustration			
			Gap 7

Diagnosability	Diagnoser	Relation to Event Diagnosis	Decentralized Diagnosis
Diagnoser:	Properties		
Illustration			
			Gap 8
Klaus Schmidt			
Department of Electro	nic and Communication Engin	eering – Çankaya University	
Diagnosability	Diagnoser	Relation to Event Diagnosis	Decentralized Diagnosis
Relation to	o Event Diagn	osis: Explanation	
Event Diag	nosis		
• Plant G	and fault event	f	
Language S	Specification		
● <i>K</i> = <i>L</i> ($G)\cap (\Sigma\setminus\{f\})^\star$		
\Rightarrow Event dia	ignosis problem ca	an easily be converted into	a language
diagnosis pro	oblem		
Example			Gap 9

Diagnosability	Diagnoser	Relation to Event Diagnosis	Decentralized Diagnosis
Decentraliz	ed Diagnosis	: Basics	
Component	S		
 Plant au 	itomaton G		
 Specifica 	ation automaton	C; specification $K = L(C)$	
 Multiple 	diagnosers D_1 ,	\ldots, D_m with different obser	vations
$\Sigma_{\mathrm{o},1},\ldots$	$, \Sigma_{\mathrm{o},m}$		
 Projection 	ons $p_i:\Sigma^\star o \Sigma^\star$	$_{\mathrm{o},i}^{\star}$ for $i=1,\ldots,m$	
Illustration			
			Gap 10
Klaus Schmidt			
Department of Electron	ic and Communication Engi	neering – Çankaya University	
Diagnosability	Diagnoser	Relation to Event Diagnosis	Decentralized Diagnosis

Decentralized Diagnosis: Definition

Diagnosis Task

• Detect each faulty string by at least one of the diagnosers

Definition (Co-diagnosability)

Let G be a DES over the alphabet Σ , let $K = \overline{K} \subseteq L(G)$ be a prefix-closed specification language and assume m local sites with their projections p_i , i = 1, ..., m. K is co-diagnosable for G and p_i , i = 1, ..., m if $(\exists n \in \mathbb{N})(\forall s \in L(G) - K)(\forall st \in L(G) \text{ s.t. } |t| \ge n \text{ or } st \text{ deadlocks})$

 $\Rightarrow (\exists i \in \{1,\ldots,m\}) (\forall u_i \in M_i^{-1} M_i(st) \cap L(G), u_i \notin K)$

Remark

• Co-diagnosability holds if each faulty string is detected by at least one diagnoser

Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University

Diagnosability	Diagnoser	Relation to Event Diagnosis	Decentralized Diagnosis
Decentralized	Diagnosis:	Example	
Illustration			
			Gap 11
Klaus Schmidt			

Diagnosability

Diagnoser

Relation to Event Diagnosis

Decentralized Diagnosis

Decentralized Diagnosis: Summary

Verification

W. Qiu, R. Kumar, Decentralized failure diagnosis of discrete event systems, Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on 36 (2) (2006) 384–395.

Related Work

• Studies on decentralized diagnosis in event diagnosis framework

R. Debouk, D. Teneketzis, Coordinated decentralized protocols for failure diagnosis of discrete-event systems, Discrete Event Dynamic Systems: Theory and Applications 10 (2000) 33–86.

• Studies on decentralized diagnosis for modular systems

C. Zhou, R. Kumar, R. Sreenivas, Decentralized modular diagnosis of concurrent discrete event systems, in: WODES, 2008, pp. 388–393.

• Studies on decentralized diagnosis using abstractions

Schmidt, K.: Abstraction-based Verification of Co-diagnosability for Discrete Event Systems, Automatica, vol. 46, pp. 1489-1494, 2010.