ECE 641 Advanced Topics in Supervisory Control for Discrete Event Systems

Lecture 10

Associate Prof. Dr. Klaus Schmidt

Department of Mechatronics Engineering - Çankaya University

PhD Course in Electronic and Communication Engineering Credits (3/0/3) Course webpage: http://ece641.cankaya.edu.tr/

Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University

Petri Nets

PN Languages

Petri Nets: Basics

Historical Perspective

• Petri nets were developed in the early 1960s by C.A. Petri in his Ph.D. dissertation

C.A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für instrumentelle Mathematik, Bonn, 1962.

Usage of Petri Nets

- Modeling concurrent, distributed, asynchronous behavior in a discrete system
- Many families of Petri Nets for managing continuous/hybrid systems
- Timed systems
- High-level information or tasks of a system
- Variable parameter systems

Petri Nets: Definition

Petri Net

- Four tuple N = (P, T, A, W)
- P is a finite set of places
- T is a finite set of transitions
- $A \subseteq (P \times T) \cup (T \times P)$ is a finite set of arcs
- $W: A \rightarrow \mathbb{N}$ is a weighting function
- $P \cap T = \emptyset$ and $P \cup T \neq \emptyset$

Graphical Representation

- Places: circles
- Transitions: boxes
- Arcs: arrows
 - \Rightarrow Bipartite graph

Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University

Petri Nets

Petri Nets: Definition

Example

PN Languages

PN Languages

Petri Nets: Pre- and Post Sets Pre-Set *x • Let $x \in P \cup T$. Then * $x = \{y \in P \cup T | (y, x) \in A\}$ \Rightarrow All predecessor nodes (places or transitions) of xPost-Set x^* • Let $x \in P \cup T$. Then $x^* = \{y \in P \cup T | (x, y) \in A\}$ \Rightarrow All successor nodes (places or transitions) of xExample Gap 2 Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University

Petri Nets

Petri Nets: Marked Petri Net

Definition

- Pair (*N*, *m*)
- N = (P, T, A, W) is a Petri Net
- $m: P \rightarrow \mathbb{N}$ is an initial marking
- Notation for $p \in P$: m[p] is marking of place p

Petri Net Dynamics: Transition Firing

- $t \in T$ is enabled at m iff for all $p \in {}^{\bullet}t : m[p] \ge W(p,t)$
- $t \in T$ can fire at m iff t is enabled at m
- Firing of t leads to the new marking m' for each $p \in P$ with

$$m'[p] = \left\{ egin{array}{cc} m[p] - W(p,t) & ext{if } t \in ^{ullet} p \ m[p] + W(p,t) & ext{if } t \in p^{ullet} \ m[p] & ext{otherwise} \end{array}
ight.$$

Klaus Schmidt

Department of Electronic and Communication Engineering - Çankaya University

Petri Nets: Marked Petri Net

Example

Gap 3

Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University

Petri Nets

PN Languages

Petri Nets: Incidence Matrix and State Equation

Pre- and Post Matrices

- $\forall p \in P$ and $t \in T$: if $(p, t) \in A$, then Pre[p, t] = W(p, t), else Pre[p, t] = 0
- $\forall p \in P$ and $t \in T$: if $(t, p) \in A$, then Post[p, t] = W(p, t), else Post[p, t] = 0

Incidence Matrix

$$C = Post - Pre$$

State Equation

• For any enabled transition $t \in T$, use vector e_t as unit vector with 1 at position of t and 0 otherwise

$$m' = m + C e_t$$

• Note: State equation can be evaluated for any vector e_t but dynamics is only defined for enabled transitions!

Klaus Schmidt

Department of Electronic and Communication Engineering - Çankaya University

Petri Nets: Incidence Matrix and State Equation

Example

Gap 4 Gap 4 Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University

Petri Nets: Structural Elements

Petri Nets

PN Languages

Petri Nets: Structural Elements

Dining Philosophers Example

- Two philosophers
- Each philosopher either thinks or eats
- There are two forks shared by the philosophers
- Each philosopher can pick any fork if available
- A philosopher thinks if he does not hold any fork
- A philosopher can only eat if he has both forks

Petri Nets: Structural Elements

Dining Philosophers Petri Net

Gap 6

Klaus Schmidt

Department of Electronic and Communication Engineering - Çankaya University

Petri Nets

PN Languages

Petri Nets: Structural Elements

Dining Philosophers Petri Net

PN Languages: Definitions

Labeled Petri Net

 $N = (P, T, A, W, E, I, x_0, X_m)$

- (P, T, A, W) is a Petri net graph
- E is the event set for transition labeling
- $I: T \to E$ is the transition labeling function
- $x_0 \in \mathbb{N}^n$ is the initial state of the net (i.e., the initial number of tokens in each place)
- $X_{\mathsf{m}} \subseteq \mathbb{N}^n$ is the set of marked states of the net.

Generated Language

 $L(N) = \{I(s) \in E^* | s \in T^* \text{ and } s \text{ is enabled from } x_0\}$

Marked Language

 $L_{m}(N) = \{I(s) \in E^{\star} | s \in T^{\star} \text{ and } s \text{ is enabled from } x_{0} \text{ and } x_{0} + C s \in X_{m}\}$ Klaus Schmidt Department of Electronic and Communication Engineering – Çankaya University

Petri Nets

PN Languages: Example

Dining Philosophers

PN Languages