
Exercise Sheet 9: State Attraction

Problem 21:

Consider the automaton $G = (X, \Sigma, \delta, x_0, X_m)$ in the following figure.

- **a.** Find all strongly connected components of G.
- **b.** Consider the sets $A_1 = \{4, 8\}$, $A_2 = \{9, 10\}$ and $A_3 = \{2, 3, 4, 8\}$. Determine which of the sets is invariant in G.
- **c.** Find an as small as possible set $A \subseteq X$ such that A is a strong attractor for X in G?

Problem 21:

Consider the plant G in the previous figure with the set of uncontrollable events $\Sigma_{u} = \{a, c, e\}$ and the invariant set $A = \{4, 8\}$.

- **a.** Determine the supremal set $\Omega_G(A)$.
- **b.** Determine a state-feedback supervisor $S \sqsubseteq G$ such that A is a strong attractor for $\Omega_G(A)$ in G.