Exercise Sheet 6: Observability

Problem 14:

Let $\Sigma = \{\alpha, \beta, \mathtt{a}, \mathtt{b}\}, \Sigma_{\mathtt{c}} = \Sigma$ and $\Sigma_{\mathtt{o}} = \{\alpha, \beta\}$. Consider $L(G) = \{\alpha, \beta, \mathtt{a}\alpha, \mathtt{b}\alpha\}$ and $K = \{\alpha, \mathtt{a}\alpha\}$.

- **a.** Verify that K is observable for L(G), Σ_{c} and Σ_{o} .
- b. Determine a supervisor S under partial observation for K and ${\cal G}$

Problem 15:

Let $L_{\rm m}(G) = \{u_1 \alpha \beta, u_1 \alpha \gamma, u_2 \alpha \gamma\}$ with $\Sigma_{\rm c} = \Sigma$ and $\Sigma_{\rm uo} = \{u_1, u_2\}$.

- **a.** Consider $K_1 = L(G) \setminus \{u_2 \alpha \gamma\}$. Determine if K_1 is observable for L(G), Σ_c and Σ_o .
- **b.** Repeat part **b.** for language $K_2 = L(G) \setminus \{u_2, u_2\alpha, u_2\alpha\gamma\}$.
- **c.** Determine a supervisor S under partial observation for K_2 and G

Problem 16:

Consider the plant G, a language $K \subseteq L(G)$, and the natural projection $p: \Sigma^* \to \Sigma_0^*$. Show that the language

$$p^{-1}p(K) \cap L(G)$$

is observable for G, all choices of $\Sigma_{c} \subseteq \Sigma$ and Σ_{o} .