
Exercise Sheet 4: Complexity

Problem 9:

Use Hopcroft's algorithm to minimize the automaton in the following figure. How many steps do you need?

Problem 10:

We want to study the computational complexity of several well-known algorithms. We consider automata $G = (X, \Sigma, \delta, x_0, X_m)$ and $C = (Y, \Sigma, \gamma, y_0, Y_m)$.

- **a.** Determine the computational complexity of $p^{-1}(L(G))$ for the inverse projection $p^{-1}: \Sigma^* \to 2^{\Gamma^*}$ with $\Sigma \subseteq \Gamma$.
- **b.** Assume that G is nondeterministic. What is the complexity of making G deterministic?
- c. Assume G is a plant, $K = L_{\rm m}(C)$ is a specification and $\Sigma_{\rm u}$ is a set of uncontrollable events. What is the complexity of $SupCon(K, G, \Sigma_{\rm u})$?
- **d.** Assume that $p: \Sigma^* \to \hat{\Sigma}^*$ is a natural projection. Find the complexity of verifying if p is a natural observer for $L_{\mathrm{m}}(G)$ from the literature.
- e. Assume that $p: \Sigma^* \to \hat{\Sigma}^*$ is a natural projection. Find the complexity of extending the alphabet $\hat{\Sigma}$ such that p becomes a natural observer for $L_m(G)$ from the literature.

<u>Hint:</u> You can check the following paper:

L. Feng and W.Wonham, "On the computation of natural observers in discrete-event systems," Discrete Event Dyn. Syst.: Theor. Appl., vol. 20, no. 1, pp. 63–102, Mar. 2010.