Exercise Sheet 3: Language-Diagnosis

Problem 6:

The following automata G_1, G_2, G_3 are given with the observable events $\Sigma_0 = \{\alpha, \beta\}$. In addition, C_1, C_2, C_3 are the respective specification automata.

- **a.** Compute the diagnoser automata D_1, D_2, D_3 for the given plants and specifications
- **b.** Decide if $K_i = L(C_i)$ is language-diagnosable for G_i and $p: \Sigma^* \to \Sigma_i^*$ for i = 1, 2, 3.
- c. Verify your result using DESTool.

Problem 7:

Consider the following plant automaton G and the specification K = L(C). Assume that there are two diagnosers with the observations $\Sigma_{o,1} = \{\alpha, \beta\}$ and $\Sigma_{o,2} = \{\alpha, \gamma\}$. Determine by inspection if K is co-diagnosable for G and $p_i : \Sigma^* \to \Sigma^*_{o,i}$ for i = 1, 2.

Problem 8:

Extend the language-diagnosability test from the lecture such that diagnosability can also be verified for plants G with unobservable cycles.